Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ligands play a central role in dictating the electronic properties of metal complexes to which they are coordinated. A fundamental understanding of changes in ligand properties can be used as design principles for more efficient catalysts. Designing ligands that have multiple protonation states that will change the properties of the coordination complex would be useful as potential ways of controlling catalysis, for example, as an on/off switch where one redox state exists below thermodynamic potential and another exists above. Thus, phenol moieties built into strongly coordinating ligands, like that of tpyPhOH (4′-(4-hydroxyphenyl)-2,2′:6′,2′’-terpyridine) may provide such a handle. Herein, we report the electrochemical and spectral characterization, and the crystallographic and computational analysis of two ruthenium analogs: [Ru(tpy)(tpyPhOH)](PF6)2 and [Ru(tpyPhOH)2] (PF6)2 (tpy =2,2′:6′,2′’-terpyridine). Cyclic voltammetry and differential pulse voltammetry indicate that two redox events occur, one of which is pH independent and we hypothesize that these follow an electrochemical- chemical-electrochemical (ECE) mechanism. XRD results of the ruthenium complexes’ protonated forms are generally consistent with expected bond lengths and angles and are in agreement with computational modeling. The properties are compared to a previously reported analog that contains the –OH group directly connected to terpyridine, [Ru(tpyOH)2](PF6)2, where tpyOH is 4′-hydroxy-2,2′:6′,2′’-terpyridine, with some intriguing differences. Overall, these data indicate that the phenyl-substituent decouples the phenol such that it behaves both as an electron withdrawing substituent and a location for a ligand centered oxidation event to occur.more » « less
-
null (Ed.)A series of fourteen 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones was prepared at room temperature by T3P-mediated cyclization of N-phenyl-C-aryl imines with thionicotinic acid, two difficult substrates. The reactions were operationally simple, did not require specialized equipment or anhydrous solvents, could be performed as either two or three component reactions, and gave moderate–good yields as high as 63%. This provides ready access to N-phenyl compounds in this family, which have been generally difficult to prepare. As part of the study, the first crystal structure of neutral thionicotinic acid is also reported, and showed the molecule to be in the form of the thione tautomer. Additionally, the synthesized compounds were tested against T. brucei, the causative agent of Human African Sleeping Sickness. Screening at 50 µM concentration showed that five of the compounds strongly inhibited growth and killed parasites.more » « less
An official website of the United States government
